Quantum Computing: From Linear Algebra to Physical Realizations by Mikio Nakahara

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspects of quantum computing and the second focused on several candidates of a working quantum computer, evaluating them according to the DiVincenzo criteria.

Topics in Part I

  • Linear algebra
  • Principles of quantum mechanics
  • Qubit and the first application of quantum information processing—quantum key distribution
  • Quantum gates
  • Simple yet elucidating examples of quantum algorithms
  • Quantum circuits that implement integral transforms
  • Practical quantum algorithms, including Grover’s database search algorithm and Shor’s factorization algorithm
  • The disturbing issue of decoherence
  • Important examples of quantum error-correcting codes (QECC)

Topics in Part II

  • DiVincenzo criteria, which are the standards a physical system must satisfy to be a candidate as a working quantum computer
  • Liquid state NMR, one of the well-understood physical systems
  • Ionic and atomic qubits
  • Several types of Josephson junction qubits
  • The quantum dots realization of qubits

Looking at the ways in which quantum computing can become reality, this book delves into enough theoretical background and experimental research to support a thorough understanding of this promising field.

DOWNLOAD – http://www.mediafire.com/?4omzyqtyynz

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: